Water and CO (co-)adsorption on pseudomorphic Pt films on Ru(0001) - a low-temperature scanning tunneling microscopy study.

نویسندگان

  • Martin Schilling
  • Sylvain Brimaud
  • R Jürgen Behm
چکیده

Coadsorption of CO and water under ultrahigh vacuum (UHV) conditions can be considered as a model system for the interaction of metal surfaces with CO in an aqueous electrochemical environment. Nevertheless, this has rarely been investigated, and in particular for catalytically relevant bimetallic systems, there is hardly any information available. Here we report results of a low-temperature scanning tunneling microscopy (STM) study on the adsorption and coadsorption of CO and water on a Ru(0001) surface covered with a pseudomorphic Pt film of 2 or 3 monolayers thickness. The role of kinetic effects introduced by the sequence of adsorption, either pre-adsorption of CO followed by water adsorption or pre-adsorption of water followed by CO adsorption, on the adlayer structure formation will be demonstrated and discussed. Furthermore, the data show a distinct influence of the thickness of the Pt film, reflecting changes in the chemistry of the Pt surface due to electronic interactions with the underlying Ru(0001) substrate ('vertical ligand effects'). Implications of the present findings on the interaction of CO with these bimetallic PtRu surfaces under electrochemical conditions will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factors controlling the CO intercalation of h-BN overlayers on Ru(0001).

The space between a two-dimensional (2D) material overlayer and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and surface reaction may occur. In this work, we present CO intercalation under a hexagonal boron nitride (h-BN) overlayer on Ru(0001) at room temperature, observed using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and scann...

متن کامل

Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces

The electrosorption and catalytic properties of bare and Pt modified Ru(0001) and Ru(10−10) single crystal surfaces and carbon supported Ru nanoparticles have been studied by electrochemical, surface X-ray scattering, scanning tunneling microscopy, Fourier transform infrared spectroscopy and high resolution transmission electron microscopy techniques. The electrochemical surface oxidation of Ru...

متن کامل

Carbon monoxide oxidation on bare and Pt-modified Ru(101̄0) and Ru(0001) single crystal electrodes

Carbon monoxide oxidation on bare and Pt-modified ruthenium surfaces with the (101̄0) and (0001) orientations was investigated with cyclic voltammetry, scanning-tunneling microscopy and in situ Fourier transform infrared spectroscopy. Facile oxidation kinetics of CO on Ru(101̄0) are observed, in contrast with a slow reaction on Ru(0001). Scanning tunneling microscopy (STM) measurements confirmed ...

متن کامل

Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces.

The adsorption properties of structurally well defined bimetallic Pt/Ru(0001) surfaces, consisting of a Ru(0001) substrate partly or fully covered by monolayer Pt islands or a monolayer Pt film, were studied by temperature programmed desorption (TPD) using CO and deuterium as probe molecules. Additionally, the adsorption of CO was investigated by infrared reflection absorption spectroscopy (IRA...

متن کامل

Reactivity of Ultra-Thin ZnO Films Supported by Ag(111) and Cu(111): A Comparison to ZnO/Pt(111)

We studied structure and reactivity of ZnO(0001) ultrathin films grown on Ag(111) and Cu(111) single crystal surfaces. Structural characterization was carried out by scanning tunneling microscopy, Auger electron spectroscopy, low-energy electron diffraction, and temperature programmed desorption. The CO oxidation behavior of the films was studied at low temperature (450 K) at near atmospheric p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 33  شماره 

صفحات  -

تاریخ انتشار 2017